QTL

BIOS 0802 2017

Phenotype variance

- Lets think of an example where plant weight is considered
- If you measure many plants and club them together as V_{P}
- Some of the variation will be because of genetic variance $\rm V_{G}$
- Some will be environmental variance V_E
- Some will e genetic-environmental variance V_{GE}
- Because at the end phenotype is accumulation of all the other facts; so

•
$$V_P = V_G + V_E + V_{GE}$$

Components of genetic variance

- Additive genetic variance = V_A
- Dominance genetic variance = V_D
- Genic interaction variance = V_1
- so the genetic variance would be

• $V_G = V_A + V_D + V_I$

• Therefore the whole phenotypic variance will be

•
$$V_P = V_A + V_D + V_I + V_E + V_{GE}$$

Types of heritability

 Broad sense heritability: A value of 0 indicates that none of the phenotypic variance results from differences in genotype and all of the differences in phenotype result from environmental variation. A value of 1 indicates that all of the phenotypic variance results from differences in genotypes.

broad-sense heritability = $H^2 = \frac{V_G}{V_P}$

 Narrow sense heritability: often proportion of the phenotypic variance that results from the additive genetic variance because, as mentioned earlier, the additive genetic variance primarily determines the resemblance between parents and offspring.

narrow-sense heritability =
$$h^2 = \frac{V_A}{V_P}$$

Calculating heritability

- Hard to control for all the environmental factors and therefore variance
- So we control for the genetic variance
 - If $V_G = 0$ (when all the plants are clone of one another)
 - Then $V_P = V_E$
- Then we can grow genetically variable plants and measure V_{P}
- Using $V_{\rm E}$ calculated on the genetically identical individuals, we could obtain the genetic variance of the variable individuals:
 - V_{G} (of genetically varying individuals) = V_{P} (of genetically varying individuals) V_{E} (of genetically identical individuals)
- Then the broad sense heritability:
 - $H^2 = V_G$ (of genetically varying individuals) / V_P (of genetically varying individuals)

Example

- Sewall Wright used this method to estimate the heritability of white spotting in guinea pigs.
- First he found that $V_P = 573$
- Then he inbred the guinea pigs until they are almost homozygous and found $V_P = 340$ (because in this population $V_G=0$ and therefore $V_P=V_E$)

•
$$V_{\rm P} - V_{\rm E} = V_{\rm G} [573 - 340 = 233]$$

- $H^2 = V_G / V_P [0.41]$
- This value implies that 41% of the variation in spotting of guinea pigs in Wright's population was due to differences in genotype.

Parent offspring regression

Mean parental phenotype

narrow-sense heritability = $h^2 = \frac{V_A}{V_P}$

Example

Degrees of relatedness

 Monozygotic (identical) twins have 100% of their genes in common, whereas dizygotic (nonidentical) twins have, on average, 50% of their genes in common. If genes are important in determining variability in a characteristic, then monozygotic twins should be more similar in a particular characteristic than dizygotic twins. By using correlation to compare the phenotypes of monozygotic and dizygotic twins, we can estimate broad-sense heritability.

$$H^2 = 2(r_{\rm MZ} - r_{\rm DZ})$$

• where r_{MZ} equals the correlation coefficient among monozygotic twins and r_{DZ} equals the correlation coefficient among dizygotic twins. For example, suppose we found the correlation of height among the two members of monozygotic twin pairs (r_{MZ}) to be 0.9 and the correlation of height among the two members of dizygotic twins (r_{DZ}) to be 0.5. The broad sense heritability for height would be $H^2 = 2(0.9 - 0.5) = 2(0.4) = 0.8$.

Limitations

- Heritability does not indicate the degree to which a characteristic is genetically determined
- An individual does not have heritability
- There is no universal heritability for a characteristic
- Even when heritability is high, environmental factors may influence a characteristic
- Heritabilities indicate nothing about the nature of population differences in a characteristic

Examples of QTL

Table 24.2 Quantitative characteristics for which QTLs have been detected

Common bean	Number of nodules	4
Mung bean	Seed weight	4
Cow pea Wheat	Seed weight Preharvest sprout	2 4
Pig	Growth Length of small intestine Average back fat Abdominal fat	2 1 1 1
Mouse	Epilepsy	2
Rat	Hypertension	2

Organism	Quantitative Characteristic	Number of QTLs Detected
Tomato	Soluble solids	7
	Fruit mass	13
	Fruit pH	9
	Growth	5
	Leaflet shape	9
	Height	9
Corn	Height	11
	Leaf length	7
	Tiller number	1
	Glume hardness	5
	Grain yield	18
	Number of ears	9
	Thermotolerance	6

Dogs

Correlated responses

Table 24.3 Genetic correlations in various organisms				
Organism	Characteristics	Genetic Correlation		
Cattle	Milk yield and percentage of butterfat	0.38		
Pig	Weight gain and back-fat thickness Weight gain and efficiency	0.13 0.69		
Chicken	Body weight and egg weight Body weight and egg production Egg weight and egg production	0.42 -0.17 -0.31		
Mouse	Body weight and tail length	0.29		
Fruit fly	Abdominal bristle number and sternopleural bristle number	0.41		

Pierce Genetics Chapter 24