QTL

BIOS 0802 2017

QTL

In 2008, geneticists used a combination of quantitative genetics and molecular techniques to identify a key gene that controls oil content in corn. First, they conducted crosses between high-oil corn plants and low-oil plants to identify chromosomal regions that play an important role in determining oil production. Chromosome regions containing genes that influence a quantitative trait are termed **quantitative trait loci** (QTLs).

Quantitative genetics

(b) Continuous characteristic

Phenotype (height)

(a) Discontinuous characteristic

Genotype and phenotype

Same example

Table 24.1Hypothetical example of plant height determined by pairs of alleles at each of three loci				
Plant Genotype	Doses of Hormone	Height (cm)		
A-A- B-B- C-C-	0	10		
A+A- B-B- C-C-	1	11		
$A^-A^-B^+B^-C^-C^-$				
$A^-A^-B^-B^-C^-C^+$				
A+A+ B-B- C-C-	2	12		
$A^-A^-B^+B^+C^-C^-$				
$A^-A^-B^-B^-C^+C^+$				
A+A- B+B- C-C-				
$A^+A^- B^-B^- C^+C^-$				
$A^-A^-B^+B^-C^+C^-$				

$A^{+}A^{+}B^{+}B^{-}C^{-}C^{-}$	3	13
$A^{+}A^{+}B^{-}B^{-}C^{+}C^{-}$		
$A^+A^- B^+B^+ C^-C^-$		
$A^-A^-B^+B^+C^+C^-$		
$A^+A^-B^-B^-C^+C^+$		
$A^-A^-B^+B^-C^+C^+$		
$A^{+}A^{-}B^{+}B^{-}C^{+}C^{-}$		
$A^+A^+ B^+B^+ C^-C^-$	4	14
$A^{+}A^{+}B^{+}B^{-}C^{+}C^{-}$		
$A^{+}A^{-}B^{+}B^{+}C^{+}C^{-}$		
$A^-A^-B^+B^+C^+C^+$		
$A^{+}A^{+}B^{-}B^{-}C^{+}C^{+}$		
$A^+A^-B^+B^-C^+C^+$		
A+A+ B+B+ C+C-	5	15
$A^+A^- B^+B^+ C^+C^+$		
$A^+A^+ B^+B^- C^+C^+$		
$A^+A^+ B^+B^+ C^+C^+$	6	16

Types of quantitative characterestics

- Meristic characteristics, for instance, are measured in whole numbers. An example is litter size: a female mouse may have 4, 5, or 6 pups but not 4.13 pups.
- Threshold characteristic, which is simply present or absent. For example, the presence of some diseases can be considered a threshold characteristic. Although threshold characteristics exhibit only two phenotypes, they are considered quantitative because they, too, are determined by multiple genetic and environmental factors.

Nilsson-Ehle's cross (1908-11)

The logic

Genotype	Doses of pigment	Phenotype
$A^+A^+ B^+B^+$	4	Purple
$\left. \begin{smallmatrix} A^+A^+ & B^+B^- \\ A^+A^- & B^+B^+ \end{smallmatrix} \right\}$	3	Dark red
$\left. \begin{array}{c} A^{+}A^{+} \ B^{-}B^{-} \\ A^{-}A^{-} \ B^{+}B^{+} \\ A^{+}A^{-} \ B^{+}B^{-} \end{array} \right\}$	2	Red
$\left. \begin{array}{c} A^{+}A^{-} B^{-}B^{-} \\ A^{-}A^{-} B^{+}B^{-} \end{array} \right\}$	1	Light red
$A^-A^- B^-B^-$	0	White

The math

- Assume we are crossing in the first locus A+A- X A+A-
 - Probability of getting A+A+ is $\frac{1}{4}$; A+A- is $\frac{1}{2}$; A-A- is $\frac{1}{4}$ [$\frac{1}{4}$ + $\frac{1}{2}$ + $\frac{1}{4}$ = 1]
- Using the same logic
 - Probability of getting B⁺B⁺ is $\frac{1}{4}$; B⁺B⁻ is $\frac{1}{2}$; B⁻B⁻ is $\frac{1}{4}$ [$\frac{1}{4}$ + $\frac{1}{2}$ + $\frac{1}{4}$ = 1]
- Therefore the probability of having $A^+A^+B^+B^+$ is $\frac{1}{4} \times \frac{1}{4} = 1/16$
- So if we to look for red kernel then the genotypes would be
 - *A*⁺*A*⁺ *B*⁻*B*⁻ 1/16
 - *A*⁻*A*⁻ *B*⁺*B*⁺ 1/16
 - A+A- B+B- 1/4
- So, the total probability of finding red is $1/16 + 1/16 + \frac{1}{4} = 6/16$

Nilsson-Ehle's cross (1908-11)

Sum up

Expanding the math

In a population homozygotes are always minority

Now statistics Frequency Distribution

Phenotype (body weight)

Examples

The mean

Standard Deviation

between variables.

First study

Results

Results

Conclusion: Flower length of the F_1 and F_2 is consistent with the hypothesis that the characteristic is determined by several genes that are additive in their effects.

Working problem

Weight (mg)	Eggs (thousands
x	у
14	61
17	37
24	65
25	69
27	54
33	93
34	87
37	89
40	100
41	90
42	97

What are the correlation coefficient for body weight and egg number in these 11 fishes?

What is regression coefficient

 The regression coefficient indicates how much y increases, on average, per increase in x.

$$b = \frac{\operatorname{cov}_{xy}}{s_x^2}$$

• Now calculate Regression coefficient