
Model organism

PG 2017

Ancestry to bilateral symmetry

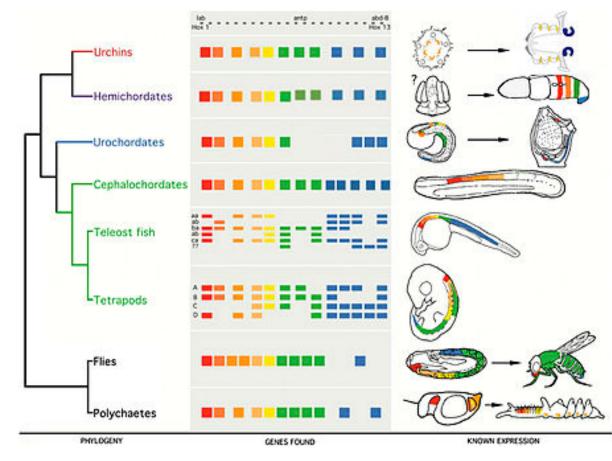
The beginning

- A common core of genetic pathways guiding development and have made it possible to reconstruct many features of the most recent common ancestor of all bilateral animals, which most likely lived 600–800 million years ago.
- This ancestor can be imagined as an advanced worm-like or primitive shrimp-like creature which had a few distinct body specializations along the nose-to-tail axis and was subdivided into three distinct germ layers (ectoderm, mesoderm, and endoderm).

Commonality

It also had evolved an inductive signalling system to partition the ectoderm into neural versus non-neural components and is likely to have possessed appendages or outgrowths from its body wall with defined anteriorposterior, dorsal-ventral, and proximo-distal axes, as well as light-sensitive organs, a sensory system for detecting vibrations, a rudimentary heart, a molecular guidance system for initiating axon outgrowth to the midline of the nervous system, ion channels for conducting electrical impulses, synaptic machinery required for neural transmission, trachea, germ cells, and an innate immune system.

The rationale


The fact that the ancestor of vertebrate and invertebrate model organisms was a highly evolved creature which had already invented complex interacting systems controlling development, physiology, and behavior has profound implications for medical genetics. The central points that we explore in this chapter can be broadly put into two categories: (1) the great advantages of model organisms for identifying and understanding genes that are altered in heritable human diseases and (2) the functions of many of those genes and the evidence that they were present in the ancestral bilateral organisms and have remained largely intact in both vertebrate and invertebrate lineages during the ensuing course of evolution.

The systematic view

Disease

Human disease gene homologs In Drosophila supports this view since 75% of human disease genes are structurally related to genes present in Drosophila and more than a third of these human genes are highly related to their fruit fly counterparts

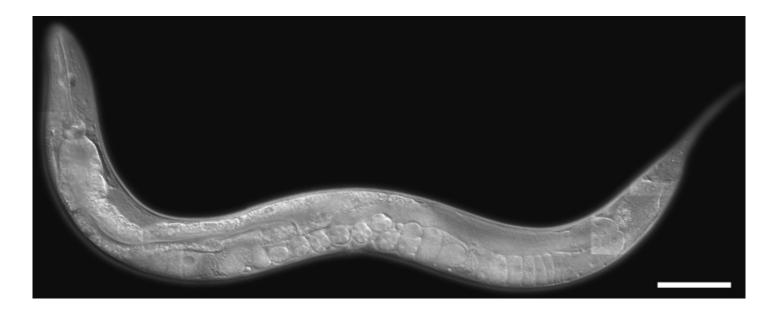
Development

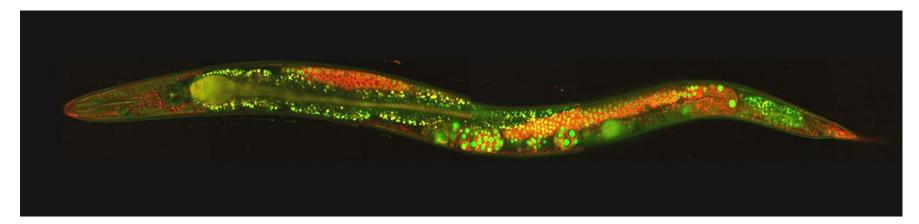
Caveat

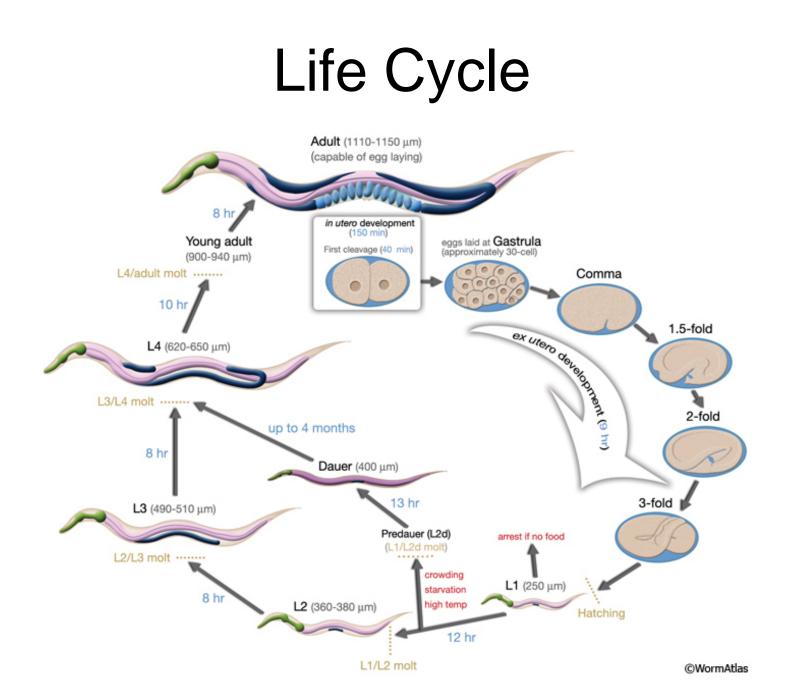
•TGN1412 was withdrawn from development after a catastrophic trial in the UK left six men fighting for their lives in March 2006. The drug was a monoclonal antibody designed to trigger the production of T cells by binding to the T-cell receptor CD28. The crucial part, however, was the supposed accompanying expression of anti-inflammatory cytokines, which, it was hoped, would alleviate rheumatoid arthritis and perhaps other autoimmune conditions. The drug passed various animal trials that yielded in vivo and in vitro evidence that although the drug stimulated T-cell production as a whole, it led to the preferential production of regulatory T cells and a down-regulation of active T cells.

Strengths and limitations 1

Species	Experimental Advantages	Experimental Limitations
Yeast	Excellent genetics	No distinct tissues
	Very powerful second site screening	
	Powerful molecular techniques	
	Genes can be easily cloned	
	Genome sequence complete	
	Possess all basic eukaryotic cell organelles	
	Cell cycle control similar to animals	
Slime mold	Excellent genetics	Limited cellular diversity
	Very powerful second site screening	
	Powerful molecular techniques	
	Genes can be easily cloned	
	Genome sequence nearing completion	
	Simple cellular behaviors similar to animals	
	Motility	
	Chemotaxis	
Nematode	Excellent genetics	Limited external morphology
	Hermaphrodites, self-fertilization	Less similar to human than flies (61% of Drosophila genes have human
	Fast generation time	counterparts vs. 43% of C. elegans genes)
	Second site suppressor/enhancer screens	Detailed direct analysis of gene expression patterns can be difficult
	Powerful molecular techniques	Some embryological manipulations difficult
	Genes can be easily cloned	
	Transposon tagging	
	SNP mapping	
	Rapid cosmid rescue	
	Deletion collections span genome	
	RNAi effective	
	Genome sequence complete	
	Few cells: 959 cells, 302 neurons	
	Morphology fully characterized	
	Serial EM reconstruction	
	All cell lineages known	
	Time lapse microscopy of development	
	Laser ablation of single identified cells	

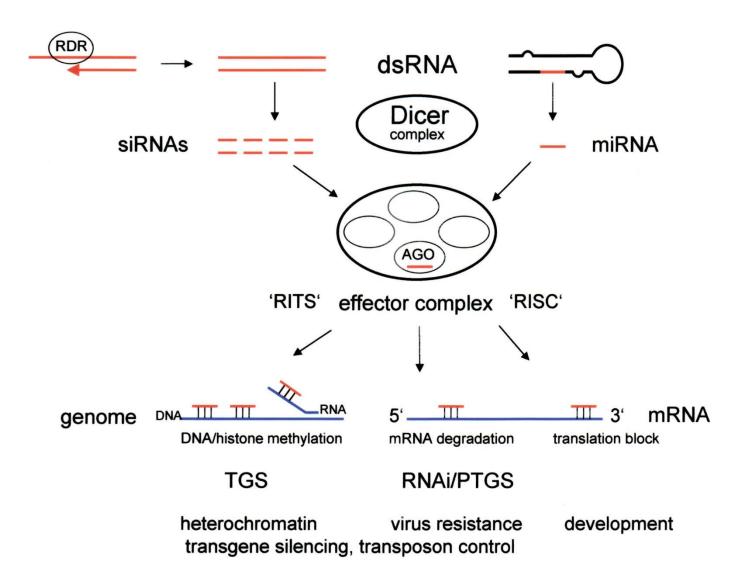

Strengths and limitations 2


Species	Experimental Advantages	Experimental Limitations
Fruit fly	Excellent genetics	Embryological manipulations difficult
	Genome sequence complete	Targeted gene disruption still difficult, although possible
	Targeted gene disruption	
	RNAi effective	
	Fast generation time	
	Second site suppressor/enhancer screens	
	Powerful molecular techniques	
	Genes can be easily cloned	
	Transposon tagging	
	SNP mapping	
	Transgenic animals easily generated	
	Targeted misexpression of genes in space and time	
	Mosaic analysis: determine where gene acts	
Zebrafish	Simplest vertebrate with good genetics: nearly saturated for	Not yet trivial to clone genes
	zygotic patterning mutants	Cannot easily make transgenic animals
	Genome analysis well under way (good SNP and linkage maps)	No targeted gene disruption
	Easy examination of morphological defects (clear embryos)	
	Embryological manipulations possible	
	Organ systems similar to other vertebrates (e.g., eyes, heart, blood, gastrointestinal tract)	
	Rapid vertebrate development	
Frog	A vertebrate	No genetics, although under development
	Ectopic gene expression possible in early embryos, although manipulation of levels difficult	Difficult to create transgenic animals
	Accessibility of embryo (pond no shell)	
	Excellent experimental embryology grafting induction preparations (Keller sandwiches/animal caps, etc.)	
	Injection of RNA into identifiable blastomeres	
1		


Strengths and limitations 3

Species	Experimental Advantages	Experimental Limitations
Chicken	Availability, low cost	Limited genetics
	Accessibility, outside of mother Well suited for embryological manipulation; transplants of limbs, notocord, neural crest	Limited genome data at present
	Easily transfected by avian retroviruses	
Mouse	Mammals, brains similar to human, all homologous areas/cell types	Classic "forward" genetics difficult
	"Reverse" genetics: targeted gene knockouts by homologous recombination routine	Early-acting mutant phenotypes difficult to study (resorbed by mother) Embryonic manipulations difficult (inside mother)
	Developmental overview same as for all mammals	Development and life cycle relatively slow (months)
	Large mutant collection	
	Construction of chimeric embryos possible	
	Availability of material at all stages	
	Source of primary cells for culture	
Monkey	Very similar to humans	Fetal experiments difficult
	Developmental connections and physiology, postnatal	No genetics
	Anatomy of learning	High cost, for both animals and facilities
	Responses to injury	-
Human	Many diseases, self-reporting mutants (>5000 genetically based	Fetal material difficult
	diseases)	No experimental access
	Some good family pedigrees	
	Genome sequence complete	
	Detailed behavior/ontogeny	

C. elegans


Characters of C. elegans

- Small (about 1 mm in length)
- Feeds on bacteria
- Easily to housed and cultivated in large numbers
- Transparent
- Easily to manipulation and observation
- Life cycle is short
- Have 1090 somatic cells at most
- Easily to mutagism
- Can be long-term storage
- Genome is completely sequenced

Genome

- The genome was completely sequenced in 1998, It is the first multicellular-organism (animal) that has a completely sequenced genome
- The genome size of C. elegans is about a hundred million base pairs
- Five pairs of autosomes and one pair of sex chromosome
- Contains approximately 20,100 protein-coding genes
- Contain more than 16,000 RNA genes

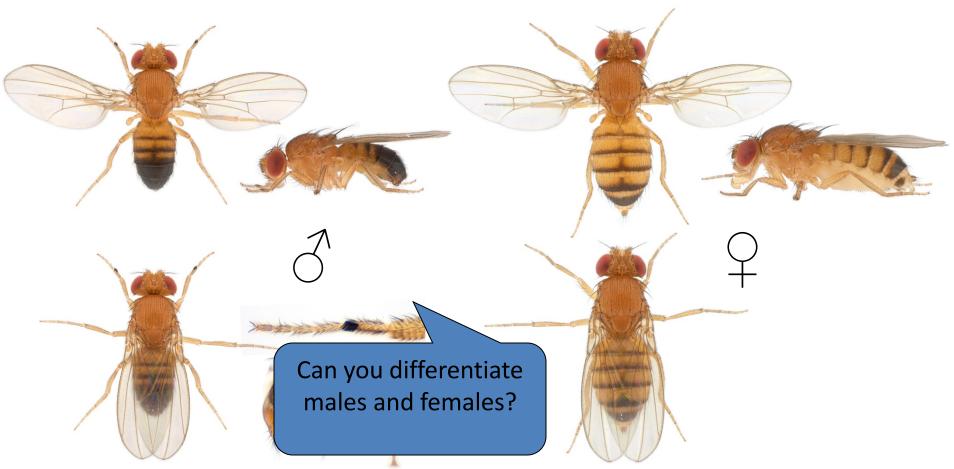
RNAi

Zebrafish (Danio rerio)

- 25 Chromosomes
- 1412 Mb size
- 42,422 genes
- Common aquarium fish
- Transgenic pet fish available

Zebrafish as model system

- Zebrafish are vertebrates. Like humans, they have a backbone.
- Zebrafish have features that make them easy to maintain, manipulate, and observe in the lab.
- The embryos develop outside the mother's body, so you can have easy access to them.
- Zebrafish embryos are transparent. This means you can watch development as it happens in living embryos.
- The embryos develop quickly.
- You can physically manipulate the embryos.
- Great for disease model


Zebrafish as a model for muscle disease

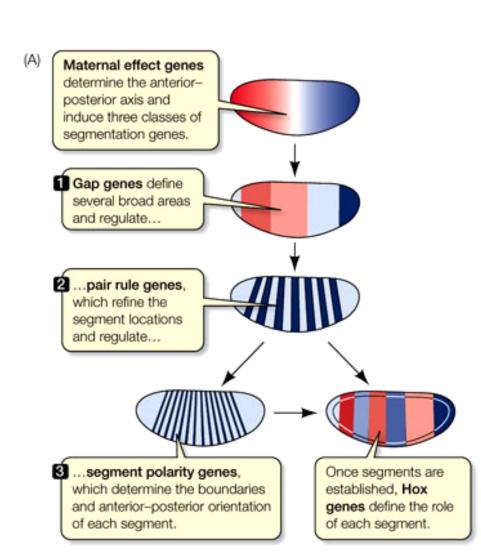
- Obvious phenotypic consequences from muscle dysfunction
 - Impaired swimming
- Abnormal muscle observable in live fish
 - Can see it with conventional microscopy
- Histopathologic changes that reflect human muscle pathologies
 - (dystrophic pattern in dystrophies, for example)

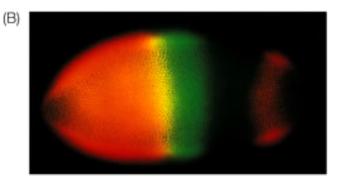
Drosophila melanogaster

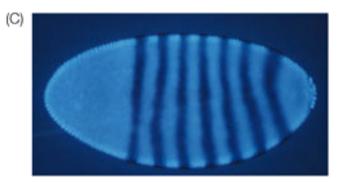
- It is an animal therefore it can be used to study development, physiology and behavior.
- 90 years of genetics

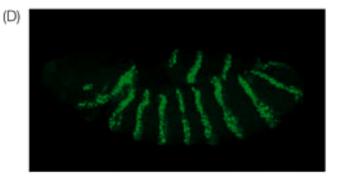
The Drosophila Genome

- 3 sets of autosomes
 - 2 and 3 large metacentric chromosome
 - 4 very small telocentric chromosome
- X/Y sex Chromosomes
 - X is a large telocentric chromosome
- Size: 165 Mb
- 14,000 genes
- 50% have a human homolog
- 61% of human disease genes have a fly counterpart


Unusual Features of Drosophila


- No crossing over in male meiosis
- larval cells (e.g. salivary gland cells) do not grow by mitotic cell division
 - they increase in size and become polyploid
 - the many chromosome strands line up to form the giant polytene chromosomes that give Drosophila it's wonderful cytogenetics.


Polytene Chromosomes


- A consequence of lack of cell division in larval life (2000N).
- DNA strands line up in register
- Giant chromosomes, banding pattern (bands 5 200 kb).
- Great cytology in favorable regions can recognize a 15 kb deletion.
- Uneven Amplification

Need to say more?

